Neighborhood Approximations for Non-Linear Voter Models
نویسندگان
چکیده
Non-linear voter models assume that the opinion of an agent depends on the opinions of its neighbors in a non-linear manner. This allows for voting rules different from majority voting. While the linear voter model is known to reach consensus, non-linear voter models can result in the coexistence of opposite opinions. Our aim is to derive approximations to correctly predict the time dependent dynamics, or at least the asymptotic outcome, of such local interactions. Emphasis is on a probabilistic approach to decompose the opinion distribution in a second-order neighborhood into lower-order probability distributions. This is compared with an analytic pair approximation for the expected value of the global fraction of opinions and a mean-field approximation. Our reference case are averaged stochastic simulations of a one-dimensional cellular automaton. We find that the probabilistic second-order approach captures the dynamics of the reference case very well for different non-linearities, i.e for both majority and minority voting rules, which only partly holds for the first-order pair approximation and not at all for the mean-field approximation. We further discuss the interesting phenomenon of a correlated coexistence, characterized by the formation of large domains of opinions that dominate for some time, but slowly change.
منابع مشابه
Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations
Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...
متن کاملLimit behavior of the exponential voter model
The recent research on opinion dynamics within communities has concentrated on the so-called voter models [1, 3, 6]. Formally, these are stochastic dynamical systems working as follows. One is given a lattice or graph whose vertices are called cells or sites. Each site x has a set of neighbor sites including the cell itself that constitute the neighborhood of x and which may influence the state...
متن کاملManifold Ranking-Based Locality Preserving Projections
As a widely used linear dimensionality reduction technique, Locality Preserving Projections (LPP) preserves the neighborhood structure of the dataset by finding the optimal linear approximations to the eigenfunctions of the Laplace-Beltrami operator on the manifold, which makes it have several advantages of both linear and nonlinear methods. However, its neighborhood graph is generated by adopt...
متن کاملApproximation theorems for fuzzy set multifunctions in Vietoris topology. Physical implications of regularity
n this paper, we consider continuity properties(especially, regularity, also viewed as an approximation property) for $%mathcal{P}_{0}(X)$-valued set multifunctions ($X$ being a linear,topological space), in order to obtain Egoroff and Lusin type theorems forset multifunctions in the Vietoris hypertopology. Some mathematicalapplications are established and several physical implications of thema...
متن کاملEstimating Neighborhood Effects on Turnout from Geocoded Voter Registration Records∗
Do voters turn out more or less frequently when surrounded by those like them? While decades of research examined the determinants of turnout, little is known about how the turnout of one voter is influenced by the characteristics of other voters around them. We geocode over 50 million voter registration records in California, Florida, and Georgia and estimate the effects of racial and partisan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015